A Key Role of Starburst Amacrine Cells in Originating Retinal Directional Selectivity and Optokinetic Eye Movement
نویسندگان
چکیده
The directional selectivity of retinal ganglion cell responses represents a primitive pattern recognition that operates within a retinal neural circuit. The cellular origin and mechanism of directional selectivity were investigated by selectively eliminating retinal starburst amacrine cells, using immunotoxin-mediated cell targeting techniques. Starburst cell ablation in the adult retina abolished not only directional selectivity of ganglion cell responses but also an optokinetic eye reflex derived by stimulus movement. Starburst cells therefore serve as the key element that discriminates the direction of stimulus movement through integrative synaptic transmission and play a pivotal role in information processing that stabilizes image motion.
منابع مشابه
GABA-immunoreactive starburst amacrine cells in pigmented and albino rats.
In this study we tested whether the critical anatomical substrate for retinal direction selectivity is altered in albino mammals. We used dual immunostaining for GABA and choline acetyltransferase and quantitatively analyzed the number of double-labelled starburst amacrine cells in wild-type and albino rats. In albino rats, the percentage of ON-amacrine cells with high GABA content was signific...
متن کاملStarburst cells nondirectionally facilitate the responses of direction-selective retinal ganglion cells.
The mechanism of direction selectivity in retinal ganglion cells remains controversial. An important issue is how the starburst amacrine cells, which are known to provide a major synaptic input to the direction-selective ganglion cells, participate in the directional discrimination. Here, we present evidence that the cholinergic outputs of the starburst cells affect the responses of the ganglio...
متن کاملKnock Out of Direction Selectivity in the Retina
Retinal ganglion cells show direction selectivity in their responses to moving stimuli. The circuitry necessary to generate directional selectivity in these cells has been long debated. Yoshida et al. (2001) use immunotoxin-mediated cell ablation to demonstrate that the starburst amacrine cell is at the core of this computation.
متن کاملFunctional Compartmentalization within Starburst Amacrine Cell Dendrites in the Retina
Dendrites in many neurons actively compute information. In retinal starburst amacrine cells, transformations from synaptic input to output occur within individual dendrites and mediate direction selectivity, but directional signal fidelity at individual synaptic outputs and correlated activity among neighboring outputs on starburst dendrites have not been examined systematically. Here, we recor...
متن کاملCongenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity
Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 30 شماره
صفحات -
تاریخ انتشار 2001